

Debye Institute for Nanomaterials Science

Interface effects in solid-state electrolytes for lithium-ion batteries

Jonas D. Hehn, Petra E. de Jongh and Peter Ngene Materials Chemistry and Catalysis, Debye Institute of Nanomaterials, Utrecht University, The Netherlands E-mail: j.d.hehn@uu.nl

Introduction

The effects of interfacial reactions on the electrochemical properties of nanocomposite and hybrid solid electrolytes for batteries is investigated with the goal to develop a detailed understanding of the nature of the interface interactions. Emphasis is placed on the ionic conductivity and structural properties of the interface layers. Lithium complex metal hydrides, such as $Li_2B_{12}H_{12}$, are used in combination with polymers and inorganic fillers to synthesize polymer-based hybrid solid electrolytes. The fundamental knowledge is crucial for the development of new electrolytes with tailor-made properties for applications in all-solid-state Li-ion batteries.

BatteryNL **DUTCH BATTERY MATERIALS**

Acknowledgements

This project has received funding from the Dutch Research Agenda - Research along Routes by Consortia 2020-21 (NWA-ORC), project no. 1389.20.089 of the Dutch Research Council (NWO). The authors would like to thank H.P. Rodenburg, K. S. Kotalgi and R. Dalebout for general and technical assistance.

The information has been compiled with the utmost care but no rights can be derived from its content

References

[1] L. M. de Kort, V. Gulino, P. E. de Jongh, P. Ngene, J. Alloys Compd. 2022, 901, 163474.

[2] C. Zhou, H. Sun, Q. Wang, J. B. Grinderslev, D. Liu, Y. Yan, T. R. Jensen, , *J. Alloys Compd.* **2023**, *938*, 168689.